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A B S T R A C T

Atypical motor development is an early indicator for several neurodevelopmental conditions, including cerebral 
palsy and Rett Syndrome, prompting early diagnosis and intervention. While not currently part of the diagnostic 
criteria for other conditions like Autism Spectrum Disorder, the frequent retrospective diagnosis of motor im-
pairments alongside these conditions highlights the necessity of a deeper understanding of the relations between 
motor and cognitive development. Traditional clinical assessments, while considered the gold standard, rely on 
movement characteristics discernible to the trained eye of professionals. The emergence of automated tech-
nologies, including computer vision and wearable sensors, promises more objective and scalable detections. 
However, these methods are not without challenges, including concerns over data quality, generalizability, 
interpretability, and ethics. By reviewing recent advances, we highlight the potential and the challenges of 
integrating automated detections into research and clinical practice. While we agree that these technologies can 
revolutionize pediatric care, we believe their use must be tempered with caution and supported by clinical 
expertise to ensure effective outcomes.

1. Introduction

Early detection of atypical motor development during infancy is 
important for the screening, diagnosis, and intervention of neuro-
developmental conditions (NDCs) such as cerebral palsy (CP) and Rett 
Syndrome (Blauw-Hospers and Hadders-Algra, 2005). These conditions 
can manifest early in life through motor impairments that, if detected in 
time, can lead to interventions that substantially improve long-term 
outcomes (Sakzewski et al., 2014; Bowler et al., 2024; Peralta and 
Cuesta, 2017). Other conditions associated with motor impairment, such 
as Autistic Spectrum Disorder (ASD), could also benefit from early 
detection and intervention. Traditional methods of assessing motor 
development often rely on clinical observation and standardized as-
sessments which are effective but also subjective, labor-intensive, and 
expensive (Novak et al., 2020).

Consequently, there has been a growing interest in leveraging tech-
nology, particularly automated systems, to provide more objective, 
scalable, and precise evaluations of motor behaviour that can lead to the 
development of better assessments (Wadhera and Kakkar, 2022; Val-
entine et al., 2020). Over the last two decades, detailed computer vision 

methods, such as markerless pose estimation and depth-sensing cam-
eras, powerful machine-learning algorithms, including advanced neural 
networks to classify atypical movements, and wearable sensor systems, 
especially those employing miniaturized inertial measurement units and 
accelerometers, have improved researchers’ ability to quantify and 
detect subtle motor impairments in infants and young children (Ossmy 
and Adolph, 2020; Redd, 2021; Ossmy et al., 2020). These automated 
tools have shown promise in detecting subtle abnormalities in motor 
patterns that might be indicative of neurodevelopmental conditions (Leo 
et al., 2022; Braito et al., 2018). In particular, depth-enabled computer 
vision setups and integrated machine-learning systems for interpreting 
wearable sensor data have emerged as especially promising due to their 
accuracy, scalability, and potential for continuous, real-time moni-
toring. Overall, automating the detection process of motor movements 
offers the possibility of early intervention, thereby addressing some of 
the limitations of traditional methods (Ni et al., 2023; Chambers et al., 
2020; Hashemi et al., 2014; Das et al., 2018; Rad et al., 2018).

However, while these technologies have significant potential bene-
fits, they also come with challenges. Issues such as data quality (i.e., the 
accuracy and completeness of information collected across various 
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settings), generalizability (i.e., the extent to which findings remain valid 
across different demographic and cultural contexts), and interpretability 
(i.e., the clarity of how results are derived, which fosters trust among 
clinicians and stakeholders) remain critical barriers to their widespread 
adoption (Schmidt et al., 2019; Hadders-Algra, 2021). Moreover, ethical 
considerations, particularly concerning data privacy and the potential 
for biases in the data, must be addressed to ensure that these technol-
ogies are used responsibly and equitably (Sharma and Giannakos, 2021; 
Cacciatore et al., 2022; Sullivan et al., 2024).

In this narrative review, we cover key literature on automatic 
detection tools of atypical motor development during the first two years 
of life. This review aims to discuss how the current landscape of tech-
nologies for infant motor assessment can and should inform future steps 
in the field, rather than quantifying previous work using effect sizes and 
inclusion/exclusion criteria. We found quantitative comparisons in this 
case challenging due to the heterogeneity of the methods, participant 
populations, and outcome measures across related studies. Thus, our 

selection of papers was guided by relevance and recency and not 
exhaustive search criteria. We begin by pointing to traditional ap-
proaches to assess atypical early motor development, continue with the 
latest advances, and elaborate on the advantages and limitations of 
using automatic tools. Finally, we conclude by discussing future di-
rections for research and clinical practice. Fig. 1 provides a schematic 
illustration of the connection between different automatic tools and 
manual detection of atypical infant motor development.

2. Traditional assessment approaches to atypical early motor 
development

Motor development in the first two years of an infant’s life has sig-
nificant implications for their cognitive, social, and emotional well- 
being (Prechtl, 1986, 1974). During this period, infants develop motor 
skills necessary for subsequent development in other domains (Bowler 
et al., 2024; West et al., 2019; Iverson and Wozniak, 2007; Piek et al., 

Fig. 1. Schematic illustration of the interplay among computer vision (detection of keypoints based on video; see picture), wearable technology (detection of 
movements based on intertial sensors which often include accelerometer, gyroscope, and magnometers; see picture), machine learning, and clinical expertise in 
detecting atypical infant movements. The color-coding highlights the level of research maturity for each component and their interactions: green indicates well- 
established findings, yellow reflects emerging or limited evidence, and red signifies minimal or no existing research.
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2008; Brian, 2021) and abnormalities as delayed milestones or atypical 
movement patterns can be early indicators of neurodevelopmental 
conditions (Sakzewski et al., 2014; Bowler et al., 2024; Peralta and 
Cuesta, 2017; Marschik et al., 2017).

Clinical observations conducted by experienced professionals take a 
central role in the assessment of atypical early motor development. In 
these observations, trained clinicians systematically evaluate various 
aspects of movement, including movement quality, posture, and the 
presence of atypical motor patterns (Peralta and Cuesta, 2017; Santos 
et al., 2001). The observations take place in both structured and un-
structured settings to comprehensively capture an infant’s motor capa-
bilities across different contexts (Colizzi et al., 2020). The expertise of 
clinicians in recognizing subtle deviations from typical movement pat-
terns is particularly valuable in identifying early developing conditions 
such as Rett Syndrome, where symptoms may emerge as early as 2–4 
months (Einspieler, 2014; Einspieler et al., 2016).

Central to these movement assessments is the careful observation of 
spontaneous motor activity. The General Movements Assessment [GMA] 
(Nunes et al., 2021; Paneth et al., 1997) exemplifies this approach, 
particularly in identifying conditions such as CP, which affects approx-
imately 2–3 per 1000 live births globally (Paneth et al., 2006). GMA is 
based on observing and analyzing the infant’s general movements 
(GMs), which are complex, varied, and fluid motor activities without 
specific external stimulation. GMs are critical indicators of the devel-
oping nervous system’s integrity (Rakowska et al., 2021). Infants with 
neurological impairments often display atypical GMs, such as being 
overly rigid or cramped or exhibiting monotonous or jerky movements. 
Through expert analysis of video recordings of these spontaneous 
movements, clinicians identify early signs of motor and neurological 
impairments long before a formal diagnosis is possible. For instance, 
infants later diagnosed with CP often exhibit cramped-synchronized or 
chaotic GMs, while those with conditions such as Angelman syndrome 
or Prader-Willi syndrome typically present with distinct patterns of 
hypotonia and reduced movement complexity (Butler et al., 2006; 
Williams et al., 2006). Yet, although these symptoms may indicate 
NDCs, infants in most countries typically undergo GMA only if they are 
born prematurely, have a low birthweight (under 1.5 kg), or experience 
hypoxia at birth. Consequently, a large proportion of infants at risk for 
other conditions associated with atypical motor development, such as 
ASD, may not receive appropriate early screening.

Several standardized assessment tools complement these observa-
tional methods, including structured protocols for evaluating motor 
development. Protocols such as the Peabody Developmental Motor 
Scales-2 and the Movement Assessment Battery for Children-2, assess 
specific motor abilities against normative data (Wilson et al., 2018; Liu 
and Breslin, 2013; Tripathi et al., 2008). These tools evaluate various 
aspects of motor function, including gross motor skills, fine motor pre-
cision, and coordination. Thus, in clinical settings, those protocols 
provide a framework for systematic evaluation that allows detection of 
subtle deviations from typical development (Connolly et al., 2006). For 
example, in Fragile X Syndrome, affecting approximately 1 in 4000 
males and 1 in 8000 females, early indicators often include delayed 
motor milestones and atypical visual attention patterns, detectable 
through these structured assessments (Crawford et al., 2001).

Parent reports and monitoring tools also supplement direct clinical 
assessments. The Vineland Adaptive Behavior Scales-3 and the Ages and 
Stages Questionnaire are the most common methods to provide valuable 
information about an infant’s motor functioning in daily life situations 
(Viviani and Stucchi, 1992; Paolo et al., 2023; Tveten et al., 2023). 
Questionnaires rely on caregiver observations and can offer information 
that may not be apparent during brief clinical evaluations. Moreover, 
motor milestone checklists remain an essential component of develop-
mental monitoring in primary care settings. Pediatricians routinely 
monitor the achievement of key motor milestones, such as rolling, 
sitting, crawling, and walking, as delays in these areas may signal an 
increased risk for various NDCs (Bowler et al., 2024; Rizzi et al., 2021).

In addition to these tools, cognitive development assessments like 
the Bayley Scales of Infant and Toddler Development (Bayley, 2006) and 
the Mullen Scales of Early Learning (Mullen, 1995) also include motor 
domains integral to track development from a whole-child perspective 
(Cantor and Osher, 2021; Cantor et al., 2021). These standardized bat-
teries assess fine and gross motor skills alongside cognitive abilities, 
further supporting that motor development is intrinsically linked to 
cognitive functioning. Early motor skills—such as grasping, reaching, 
and coordinating movements—are not isolated milestones but are in-
tegral to broader cognitive processes like attention, problem-solving, 
planning, and spatial awareness. For example, fine motor skills, such 
as the ability to manipulate objects, support cognitive tasks like sorting, 
categorizing, and understanding cause-and-effect relationships 
(Rosenbaum et al., 2012). Gross motor skills, like crawling or walking, 
allow infants to explore their physical environment and reason about 
action outcomes (Adolph and Hoch, 2019). Thus, including motor as-
sessments within broader cognitive batteries tests motor delays not only 
from a physical perspective but also within the context of neuro-
developmental outcomes (Rizzi et al., 2021; Hwarng et al., 2021; Lucas 
et al., 2016).

Finally, standardized neurological examinations conducted by pe-
diatric neurologists or developmental pediatricians constitute another 
component in the assessment of atypical infant motor development. 
These evaluations employ a range of specific tests and observations to 
assess neuromotor function across multiple domains. The Hammersmith 
Infant Neurological Examination, for instance, provides a structured 
approach to evaluating neurological status in infants, assessing posture, 
cranial nerve function, movements, tone, and reflexes (Romeo et al., 
2016; Maitre et al., 2016). Similarly, the Amiel-Tison Neurological 
Assessment at Term offers a standardised method for evaluating 
neurological status in both term and preterm infants, with particular 
attention to muscle tone, primitive reflexes, and postural reactions 
(Gosselin et al., 2005). These examinations are particularly valuable in 
differentiating between various conditions that may present with similar 
motor abnormalities in infancy. For instance, while both CP and genetic 
disorders may present with delayed motor milestones, the specific 
pattern of neurological findings can help distinguish between these 
conditions. The combination of clinical observation, standardised 
assessment tools, and the examiner’s expertise allows for more accurate 
diagnosis and appropriate targeting of interventions (Noritz et al., 2013; 
Tamplain et al., 2019).

Nevertheless, despite their widespread use, traditional assessment 
methods have limitations. The subjectivity inherent in observational 
assessments can lead to issues in inter-examiner reliability, while the 
artificial nature of standardised testing environments may not accu-
rately reflect typical motor performance (Bhat et al., 2011). Cultural and 
linguistic factors can affect the validity of standardised assessments, 
particularly when these tools have not been adequately validated for 
diverse populations. Moreover, these motor evaluations are 
time-intensive, and the requirement for specialized expertise constrains 
the accessibility and scalability of traditional assessments (Case-Smith, 
1992; Heineman and Hadders-Algra, 2008; Mendonça et al., 2016).

The challenges in early movement assessment are also compounded 
by the overlap of symptoms between different NDCs. For instance, hy-
potonia may be present in multiple conditions, including Prader-Willi 
Syndrome, Fragile X Syndrome, and various other genetic disorders, 
making differential diagnosis challenging based solely on motor 
assessment (Harris, 2008; McCandless and Cassidy, 2021). Additionally, 
the limited availability of disorder-specific assessment tools validated 
for use in the first years of life further complicates early detection efforts 
(Hadders-Algra, 2021; Rizzi et al., 2021; Walder et al., 2009). Unless an 
infant is seen in a high-risk clinic for the reasons outlined above, they are 
unlikely to undergo any motor evaluation beyond the very basic gross 
motor milestone assessments conducted by parents, general practi-
tioners, or health visitors. This lack of specialized evaluation highlights a 
critical gap in the early detection process. Relying solely on parental 

O. Ossmy et al.                                                                                                                                                                                                                                  Brain Research Bulletin 224 (2025) 111311 

3 



reporting or routine checks often misses subtle motor delays or abnor-
malities that could be early markers of neurodevelopmental conditions. 
Moreover, the absence of standardized, early-life motor assessment tools 
diminishes the chances of identifying atypical motor development that 
might inform more accurate, earlier interventions.

Current research priorities focus on addressing these limitations with 
more sensitive, objective, and culturally adaptable evaluation tools. 
Early recognition remains critical, as a timely intervention during this 
period of rapid neurodevelopment significantly impacts long-term out-
comes. Future directions include the identification of disorder-specific 
behavioral markers, the creation of standardized assessment protocols 
for high-risk infants, and the development of more precise evaluation 
methods specifically designed for the first year of life (Marschik et al., 
2017; Hogan et al., 2017; Dimitropoulos et al., 2013). Thus, integrating 
traditional assessment methods with emerging technologies promises to 
enhance the early detection of atypical movements, potentially enabling 
earlier interventions across a spectrum of NDCs. There is also a growing 
emphasis on developing assessment strategies that can be effectively 
implemented in community settings, increasing the accessibility of early 
motor screening for diverse populations (Mendonça et al., 2016; Zwai-
genbaum et al., 2015).

3. Advances in automatic detection of atypical infant movement

3.1. Computer vision

Computer vision, a branch of artificial intelligence (AI), enables 
automatic analysis of visual data from the environment, such as images 
and videos. In the context of atypical motor development, this technique 
has emerged as a powerful tool for automatically tracking infant 
movements and identifying patterns indicative of neurodevelopmental 
conditions (Leo et al., 2022).

One of the primary applications of computer vision in this context is 
pose estimation, which involves detecting the position and orientation 
of an infant’s body in an image or video. Pose estimation algorithms 
identify keypoints of the body, such as joints and limbs, and track their 
movement over time, which allows the detection of motor patterns and 
features that are considered abnormal. This approach has been used 
widely in recent years to research various NDCs, particularly CP and 
ASD (Chambers et al., 2020; Silva et al., 2021; Hesse et al., 2018). For 
example, a study by Avcil et al. (2021). used computer vision for upper 
extremity rehabilitation in children with CP, demonstrating that pose 
estimation can assist in tracking the progress of therapeutic in-
terventions by analyzing movement changes over time.

Beyond CP, multiple studies on ASD have demonstrated accurate 
identification of unusual limb movements and postural control consis-
tent with early signs of ASD (Campbell et al., 2019; De Belen et al., 
2020), yet there is no standardized screening practice to date. Computer 
vision was also used to assess fine motor skills in infants at risk of ASD 
and successfully identified subtle hand gestures and repetitive motions 
that serve as early markers of the condition (De Belen et al., 2020; Negin 
et al., 2021). Finally, research has shown that computer vision can 
effectively capture delayed reaching and grasping movements in infants 
at risk of ASD compared to low risk of ASD (Dawson et al., 2018).

In the realm of GMA, Silva et al. (2021) reviewed a broad range of 
recently developed computer-vision systems for automated analysis of 
GMA and infant fidgety movements. Fidgety refers to tiny movements 
present within a distinct timeframe (two- to five-month-olds) for all 
typically developing infants. Most reviewed systems used multiple 
synchronized cameras to capture infant movements from various angles, 
combined with advanced pose estimation algorithms to track body 
landmarks. By applying machine learning techniques to the extracted 
movement features, researchers automatically classified fidgety move-
ments as typical or atypical with high accuracy at different ages 
including 100 % accuracy in predicting CP using the mean variability of 
the centroid of motion from two recordings (Adde et al., 2013), 93 % 

accuracy using logistic regression on GMA data (Ma et al., 2024), 80 % 
accuracy in detecting writhing movements using pose-based features 
(Doroniewicz et al., 2020). 80 % accuracy in predicting expert GMA 
classification using a smartphone model (Passmore et al., 2024), and 
92.7 % sensitivity and 81.6 % specificity in CP prediction with a 
computer-vision model (Ihlen et al., 2019). These studies demonstrate 
the potential of automated methods to enhance early CP detection and 
intervention (for full review, see Silva et al., 2021).

In some studies, the computer-vision algorithms were further sup-
ported by advances in hardware. Chambers et al., (2020), for example, 
developed a system with depth cameras to capture three-dimensional 
movement data from infants during standardized motor assessments. 
By applying advanced machine learning algorithms on the video data, 
they automatically classified infants into high-risk and low-risk cate-
gories for CP with remarkable accuracy (~93 % precision). Similarly, 
Orlandi et al. (2018) introduced a novel markerless motion-tracking 
system based on RGB-D cameras to analyze spontaneous movements 
in preterm infants. RGB-D are depth cameras that capture multidimen-
sional movement data, which can be processed using custom computer 
vision algorithms to extract detailed 3D kinematic information. By 
comparing the movement patterns of preterm infants to those of 
full-term infants, the researchers identified differences in movement 
variability and complexity.

Some researchers went beyond limb movements or posture detec-
tion. Sarmiento and Naval used computer vision techniques to analyze 
facial expressions and body movements in infants at risk for neuro-
developmental conditions (Sarmiento and Naval, 2020). The researchers 
employed a multi-camera setup to capture high-resolution video data of 
infants during standardized assessment procedures. Advanced facial 
recognition algorithms tracked facial landmarks while analyzing limb 
movements. By integrating these different data streams, the study 
revealed associations between facial expressions, body movements, and 
developmental outcomes. This work is an example of the potential of 
having a holistic computer-vision approach that encompasses both 
motor and socio-emotional domains.

3.2. Wearable technology

Other technological advancements have introduced objective 
assessment of motor development. Motion capture technology, wearable 
sensors, and machine learning algorithms have emerged as promising 
tools for quantifying atypical motor development (Chen et al., 2016; 
Airaksinen et al., 2022; Irshad et al., 2020). Wearable technology that 
relies on inertial measurement units (IMUs) as accelerometers, gyro-
scopes, and magnetometers, and assess coordination in infants who 
demonstrate atypical movement patterns (Chen et al., 2016; Machireddy 
et al., 2017; Fry et al., 2018).

The use of IMUs in this context has been of particular interest. One of 
the pioneering studies in this field was conducted by Gravem et al. 
(2012), who used compact wireless accelerometers to assess movement 
patterns in preterm and full-term infants. The researchers attached the 
sensors to the wrists and ankles of preterm and full-term infants, 
enabling continuous monitoring of limb movements. Findings revealed 
significant differences in movement acceleration between the two 
groups, particularly in the lower extremities.

Building upon this foundation, Marcroft et al. (2015) explored the 
feasibility of using miniature accelerometers for long-term movement 
monitoring in a clinical setting. Their study involved preterm infants, 
whose limb movements were recorded over a three-day period. The 
accelerometers, carefully attached to the infants’ limbs, provided 
continuous data on movement frequency and intensity. While the study 
successfully demonstrated the practicality of using wearable sensors in a 
neonatal intensive care environment, the authors emphasized the need 
for larger-scale studies to establish normative data and validate the 
approach.

Some researchers integrated machine learning techniques with IMU 
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data to further enhance the detection of atypical infant movements. 
Heinze et al. (2010) tested infants diagnosed with CP and typically 
developing children with wearable accelerometers to capture sponta-
neous movements, which were then analyzed using advanced genetic 
machine-learning algorithms. By processing the rich dataset obtained 
from the sensors, they distinguished between infants with typical and 
atypical GMs with an impressive accuracy of 100 % in sensitivity (cor-
rect classification of infants with CP) and 83 % in specificity (correct 
classification of TD infants). In parallel, Airaksinen et al. (2020) intro-
duced an innovative "smart jumpsuit" equipped with multiple acceler-
ometers and gyroscopes. This full-body wearable device was designed to 
track the movements of infants towards the end of their first year and 
was demonstrated on infants around 7 months of age (Airaksinen et al., 
2022, 2020; Vaaras et al., 2023; Airaksinen et al., 2024). Infants’ pos-
tures and movements were detected with accuracy comparable to 
human raters (Pearson r = 0.9 with human assessment). This smart 
jumpsuit represents a significant step towards continuous, objective 
monitoring of motor development.

4. Advantages

Automated systems offer several significant advantages over tradi-
tional methods of detecting atypical early motor development, partic-
ularly in terms of objectivity, scalability, and continuous monitoring 
capabilities.

4.1. Objectivity and scalability

One of the primary benefits of automated systems is their ability to 
provide objective assessments of motor function, thus reducing the 
inherent risk of observer bias. This objectivity is important, especially 
when dealing with early motor development, where subtle movements 
can be missed or interpreted differently by human observers 
(Kepenek-Varol et al., 2016; Fjørtoft et al., 2009). Moreover, automated 
systems can process vast amounts of data with consistent accuracy, 
enabling the detection of patterns and anomalies that might elude even 
experienced clinicians. For instance, a study by Kanemaru et al., (2014)
demonstrated that automated analysis of GMs using accelerometers 
could identify infants at risk for CP with high sensitivity and specificity, 
outperforming traditional observational methods.

Such achievement is attainable due to the scalability of automated 
assessment tools which can handle large amounts of data. Traditional 
methods of assessing motor development require extensive training and 
can be time-consuming. As Einspieler et al. (2016) point out, GMA is 
effective, but it is not easily scalable due to the need for expert clinicians 
who are trained in interpreting infant movements. Automated tools 
mitigate this limitation by being deployed on a larger scale, allowing for 
more widespread screening of populations, even in low-resource settings 
where access to specialized care is limited. This scalability supports the 
expansion of early detection programs, particularly in underserved 
communities, as it enables more infants to be assessed without the need 
for constant clinical oversight (Gao et al., 2019; Groos et al., 2022; 
Sapiro et al., 2019).

4.2. Continuous monitoring

The ability of automated tools to provide continuous monitoring is a 
big step forward in assessing motor development. Traditional methods 
often rely on periodic assessments, which may miss critical periods of 
motor development or subtle changes over time (Braito et al., 2018). 
Numerous studies over the past decade have highlighted the potential to 
mitigate scaling errors in atypical development by collecting data over 
extended periods and at high frequency (for reviews: Rahman et al., 
2022; Gargot et al., 2022; Ribas et al., 2023). By using automatic tech-
nology for frequent measurements, researchers can better track devel-
opmental trends, which are often mischaracterized when using 

infrequent assessments. For example, low-frequency measurements can 
give the impression of distinct developmental stages, despite the reality 
that development is a continuous process. In contrast, high-frequency 
data collection allows measurements of how motor skills are acquired 
on a minute-by-minute basis. Achieving this level of detail in movement 
analysis is challenging with traditional observational methods alone.

One example comes from Smith et al. (2015) who used a network of 
wearable sensors to continuously monitor full-body movements of in-
fants in their home environment. Their study, conducted over a 
five-month period, revealed not only how movement patterns evolved 
across developmental milestones but also how these patterns fluctuated 
on a day-to-day basis, challenging the assumption that motor develop-
ment follows a linear trajectory—even in low-risk children. The 
continuous nature of their monitoring allowed for the detection of 
transient movement patterns that might have been missed in shorter 
observation periods.

5. Limitations and ethical considerations

Despite these promising advancements, automatic detection tech-
nologies face several limitations that must be addressed to ensure their 
effective application in clinical settings (See Fig. 1).

5.1. Quality and reliability

One of the most pressing challenges lies in ensuring the quality and 
reliability of the data upon which these systems rely. Automated 
detection tools are highly sensitive to the conditions under which the 
data is captured. Various factors such as lighting conditions, camera 
angles (in the case of computer vision) and sensor placement (in the case 
of wearables) can substantially impact the accuracy of the captured data 
and, consequently, the predictions made by the system.

Poor-quality video data can lead to inaccurate interpretations of 
motor behavior (Daliri et al., 2023). Varying illuminations have been 
shown to corrupt image segmentation and movement detection (Tung 
et al., 2019; Fu et al., 2017). A few researchers showed that these effects 
on detection can be improved using light-adaptive algorithms (Hu et al., 
2024), shadow elimination, and noise reduction (Sridevi and Meenak-
shi, 2020; Li and Hu, 2010). Camera placement also affects detection, as 
demonstrated by experiments using ceiling and wall-mounted sensors 
(Yun and Lee, 2014). Different sensing technologies have been explored, 
including pyroelectric infrared sensors (Yun and Lee, 2014), depth 
cameras (Ranganathan, 2020), and visible light sensing (Deprez et al., 
2020).

Similarly, the benefits of wearable technology’s objectivity and 
scalability are tempered by the need for careful calibration and stan-
dardized sensor placement protocols, which are essential for ensuring 
reliable data collection, particularly in naturalistic settings. Even minor 
measurement drift, external interferences, and incorrect positioning 
(known from the adult and patient literature; Wong, 2015; Suzuki et al., 
2017) can significantly compromise data quality, potentially obscuring 
indicators of atypical development.

5.2. Generalization

Another limitation is the generalizability of the algorithms used in 
these automated systems. Machine learning models are typically trained 
on specific datasets, which may not fully represent the broader popu-
lation. Many datasets used for training these models are drawn from 
infants in high-income countries, where environmental and cultural 
factors significantly differ from those in low-income settings. This 
discrepancy can limit the generalizability of the algorithms, making 
them less effective when applied to diverse populations. An algorithm 
trained on data from infants in urban environments may fail to account 
for the variations in motor development seen in rural or resource-limited 
settings. The lack of diverse training data could also introduce biases 
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into the system, leading to skewed predictions that disproportionately 
affect certain demographic groups.

Furthermore, the majority of computer vision algorithms used in 
infant movement analysis are based on models originally developed for 
adult movement recognition. This presents significant challenges as in-
fant movements differ substantially from adult movements in terms of 
speed, coordination, and variability. Indeed, Chambers et al. (2020)
observed that standard pose estimation algorithms, which were pri-
marily designed for adult bodies, often struggle to accurately track the 
rapid and unpredictable movements characteristic of infants. For 
example, Microsoft Kinect SDK skeleton tracking, random ferns 
body-part classifiers, or CNN-based 2D pose estimators fail to detect or 
localize limbs accurately when infants lie on their backs, have shorter 
limb proportions, or exhibit self-occlusions (e.g., grabbing feet; Hesse 
et al., 2018). Kinect’s SDK often cannot track small supine infants, 
random ferns mislabel body parts due to unseen poses in adult-focused 
training sets, and CNN-based estimators mix up limbs when hands and 
feet overlap. These issues result in large joint errors, swapped limbs, or 
complete tracking failures for infant data (Hesse et al., 2018).

This discrepancy between the adult and infant movement detections 
can lead to errors in movement detection and classification. The need for 
specialized algorithms that account for the distinct biomechanical 
properties of infant bodies and the developmental stages of motor con-
trol. Algorithms specifically tailored to infant movement patterns may 
achieve significantly higher accuracy in detecting subtle motor abnor-
malities compared to those adapted from adult models.

Moreover, the reliance on adult-based algorithms may inadvertently 
introduce age-related biases into the assessment process. The funda-
mental differences in movement quality between infants and adults 
necessitate a ground-up approach to algorithm development for infant 
movement analysis. Such an approach involves not only adapting 
existing computer vision techniques but also developing novel ap-
proaches that are inherently suited to the unique challenges of infant 
movement recognition.

5.3. Interpretability

Interpretability remains the substantial challenge in adopting 
machine-learning-based tools, which often function as "black boxes," 
producing predictions without offering clear explanations for how those 
predictions were derived. Moreover, interpreting neurological exami-
nation findings in infants requires significant clinical experience and 
expertise, as the manifestation of neurological signs can be subtle and 
variable in early development.

This lack of interpretability can be a significant barrier to the clinical 
adoption of these technologies, as clinicians may be hesitant to rely on a 
system whose decision-making process is opaque. Without a clear un-
derstanding of how an algorithm arrives at its predictions, it becomes 
difficult for healthcare professionals to evaluate the accuracy and reli-
ability of the system’s outputs. This issue of interpretability is especially 
critical in a clinical setting because erroneous predictions can have 
significant consequences for a child’s developmental trajectory. There-
fore, enhancing the transparency and interpretability of automatic tools 
is important for building clinician trust and ensuring these systems can 
be effectively integrated into healthcare practices.

5.4. Ethics

Finally, the reliance on large datasets of infant motor behavior raises 
important ethical considerations about data privacy and consent. Re-
searchers stress that collecting and storing sensitive data, particularly 
when involving vulnerable populations such as infants, must adhere to 
strict privacy and security standards (Castellani et al., 2023). Ensuring 
that families provide informed consent, and that the data is anonymized 
and securely stored is essential to protect the privacy and rights of the 
participants.

Distinct ethical challenges emerge for different technological ap-
proaches. While both computer vision and wearable technologies raise 
privacy issues, they require different ethical considerations. Computer- 
vision systems, which rely on video recordings, pose privacy chal-
lenges due to the identifiable nature of visual data. Video recordings of 
infants may inadvertently capture sensitive information about the home 
environment or family members, raising concerns about data security 
and potential misuse.

In contrast, wearable technologies like IMUs generally collect less 
identifiable data, primarily focusing on movement patterns and accel-
erations. However, these devices can still capture sensitive information 
about an infant’s daily routines and behaviors. The continuous nature of 
data collection from wearable devices also raises questions about the 
extent of monitoring and the potential for over-surveillance of infant 
activities.

Furthermore, the ethical implications of data ownership and control 
differ between these approaches. With wearable technologies, data is 
typically stored locally or transmitted directly to secure servers, poten-
tially offering greater control over data access and distribution. In 
contrast, video data from computer vision systems may be more chal-
lenging to manage securely, particularly if cloud-based processing is 
involved.

Practical issues such as the cost and accessibility of these technolo-
gies must also be considered, and the widespread adoption of automatic 
detection tools may be hindered by the high costs associated with 
developing and maintaining these systems. For example, advanced 
wearable motion tracking systems and high-quality video analysis tools 
can be prohibitively expensive for many healthcare providers, particu-
larly in low-resource settings. Additionally, the need for specialized 
equipment to operate these systems may limit their accessibility, further 
widening the gap in healthcare access between high-income and low- 
income regions.

6. Future directions and conclusion

The field of automated detection of atypical infant movements is at a 
point when it is ready to transform early identification and intervention 
for neurodevelopmental conditions. As we look ahead, several key di-
rections emerge to address current limitations and maximize the po-
tential of these technologies (Fig. 1).

A primary focus for future research lies in developing longitudinal, 
high-frequency data collection protocols. The quick changes in infant 
movements necessitate continuous, long-term monitoring to capture the 
full spectrum of motor behaviors. We agree with Marschik et al. (2017)
that single-point assessments may miss crucial developmental windows. 
Future studies should aim to track infants from birth through the first 
two years of life, with frequent, regular assessments. This approach 
would provide a more comprehensive picture of developmental trajec-
tories in motor skills and enable the detection of subtle deviations 
indicative of emerging neurodevelopmental conditions. The success of 
such longitudinal studies hinges on integrating clinical expertise with 
automated systems. Whilst machine learning algorithms offer powerful 
analytical capabilities, they must be guided by clinicians. This synergy 
should be prioritized in future research, bringing together pediatric 
neurologists, developmental psychologists, and machine learning ex-
perts. We argue that clinicians should be integral at every stage of the 
automated assessment pipeline. Specifically, clinicians should support 
the work of algorithm developers by (1) guiding the annotation of the 
training data by identifying and labeling critical movement features or 
atypical patterns; (2) validating algorithm outputs during its develop-
ment through clinical evaluations and standardized assessments, 
ensuring that automated detections align with established diagnostic 
criteria; and (3) interpreting and contextualize model predictions in 
real-world clinical settings, advising on treatment decisions, in-
terventions, and follow-up plans based on each infant’s unique devel-
opmental profile.
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In this context, a stronger bioengineering perspective is essential for 
guiding the design and standardization of sensor-based technology. 
Recent advancements in wearable and sensors have revolutionized the 
monitoring of biophysical and biochemical parameters in healthcare 
(Suo et al., 2024; Yogev et al., 2023), enabling real-time data collection 
across physical activity, vital signs, and even environmental cues (Chen 
et al., 2012). Integrating multi-sensor approaches in future 
research—incorporating movement data alongside physiological, 
contextual, and environmental measurements—could significantly 
broaden our understanding of infant motor behavior (Williams et al., 
2020; Chen et al., 2007).

Another important future direction concerns the challenge of 
generalizability by examining how demographic, cultural, and envi-
ronmental factors influence infant motor development. Variations in 
infant-caring practices—such as swaddling, carrying methods, and 
available physical spaces—can shape movement experiences. Likewise, 
different cultural expectations for early motor milestones may alter 
parent-child interactions and thus modulate infants’ behaviors. Auto-
mated tools that have been often trained on infants from high-income or 
specific cultural backgrounds may fail to capture these variations, 
leading to biased outcomes. Expanding data collection efforts to include 
diverse populations and movement contexts will be crucial for creating 
robust algorithms that can accurately identify atypical motor develop-
ment across all communities. These steps will help ensure equitable 
access to early detection and will minimize the risk that certain pop-
ulations are overlooked or mischaracterized by existing technologies.

Moreover, while previous infancy research has used audio recorders, 
accelerometers, and cameras to capture everyday behaviors during the 
first years of life (de Barbaro and Fausey, 2022), there has been limited 
use of embodied sensors in everyday objects. However, few researchers 
have examined the possibility of using sensor-equipped toys to assess 
spatial cognition (Campolo et al., 2011, 2012) and the feasibility of 
collecting rich motor data from infants using this technology (Kuo et al., 
2022). Yet, this approach has not been systematically used for auto-
mated early detection of atypical development, and it still requires 
adaptation and validation before it can achieve continuous, 
high-frequency monitoring for detecting subtle, early signs of atypical 
motor development. Future research should further refine these ap-
proaches for more sensitive and scalable early detection in naturalistic 
settings.

Integrating multiple data modalities presents another promising 
avenue. Combining data from wearable sensors, computer vision sys-
tems, and traditional clinical assessments could provide a more holistic 
view of infant development. Such an approach will also address issues in 
generalizability, as it will focus on developing and validating algorithms 
using diverse, representative datasets encompassing a wide range of 
ethnic, socioeconomic, and cultural backgrounds.

Finally, as these technologies become more prevalent, developing a 
robust framework for data privacy, consent, and equitable access is 
necessary. Researchers and engineers should work closely with ethicists, 
policymakers, and community stakeholders to ensure responsible 
development and deployment.

In conclusion, we believe that the future of automated detection of 
atypical infant movements lies in integrating longitudinal, high- 
frequency data collection with expert clinical knowledge. Embracing 
interdisciplinary collaboration, addressing current limitations, and 
maintaining a strong ethical foundation will fulfil the potential of these 
technologies in improving long-term outcomes for children at risk.
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