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SUMMARY
Flexibility and generativity are fundamental aspects of functional behavior that begin in infancy and improve
with experience. How do infants learn to tailor their real-time solutions to variations in local conditions? On a
nativist view, the developmental process begins with innate prescribed solutions, and experience elaborates
on those solutions to suit variations in the body and the environment. On an emergentist view, infants begin
by generating a variety of strategies indiscriminately, and experience teaches them to select solutions
tailored to the current relations between their body and the environment. To disentangle these accounts,
we observed coordination patterns in 11-month-old pre-walking infants with a range of cruising (moving
sideways in an upright posture while holding onto a support) and crawling experience as they cruised over
variable distances between two handrails they held for support. We identified infants’ coordination patterns
using a novel combination of computer-vision, machine-learning, and time-series analyses. As predicted by
the emergentist view, the least experienced infants generated multiple coordination patterns inconsistently
regardless of body size and handrail distance, whereas the most experienced infants tailored their coordina-
tion patterns to body-environment relations and switched solutions only when necessary. Moreover, the
beneficial effects of experience were specific to cruising and not crawling, although both skills involve
anti-phase coordination among the four limbs. Thus, findings support an emergentist view and suggest
that everyday experience with the target skill may promote ‘‘learning to learn,’’ where infants learn to
assemble the appropriate solution for new problems on the fly.
INTRODUCTION

Flexibility and generativity are what make skills truly functional.

Consider human walking: in skilled walkers, interlimb coordina-

tion follows a universal pattern where each leg moves the

same distance with the same timing, in precise anti-phase with

the other leg [1]—but only while stepping on a treadmill or

walking in a straight path over uniform ground. In a real-world

environment, coordination cannot follow a prescribed formula.

Instead, the distance, timing, and direction of leg movements

must be continually modified to suit changes in local conditions

[2, 3]. Moreover, sometimes all four limbs contribute to real-time

solutions (e.g., crawling), and sometimes, environmental sup-

ports must be incorporated into the solution (e.g., rock climbing).

Such flexibility and generativity begin in infancy and improve

with experience (for reviews, see [4–6]). For example, with

experience, infants learn to modify their step length, speed,

and interlimb phasing to keep balance while walking over slopes,

drop-offs, and bridges, and they learn to plan gait modifications

ahead of time based on visual information from a distance [7].

Experience-related improvements raise an important develop-

mental question—how do infants learn to adapt their coordina-

tion patterns to variations in local conditions? One possibility is

that the developmental process begins with innate, neuromus-

cular mechanisms that generate prescribed coordination
Curren
patterns for moving the two legs in walking and all four limbs in

crawling [8–12]. On this nativist view, experience elaborates on

the basic coordination patterns withmore adaptive, real-time so-

lutions to cope with variations in the body and environment. In

contrast, on an emergentist view, infants begin with a prolifera-

tion of variable coordination patterns, and experience teaches

infants to select real-time solutions attuned to variations in

body-environment relations [13–16]. That is, coordination pat-

terns are emergent, and experience teaches infants to assemble

the appropriate solution on the fly. However, existing evidence

cannot distinguish between innate versus emergent coordina-

tion patterns because both camps study infants moving over

uniform ground or stepping on a motorized treadmill and thus

predict the same outcome—converging to more consistent

coordination patterns with experience. What’s needed are

manipulations of the environment where predictions of the two

accounts differ.

Here, we investigated the role of experience in infants’ acqui-

sition of behavioral flexibility by focusing on ‘‘cruising’’—when

pre-walking infants step sideways using an environmental sup-

port (coffee table, couch, etc.) to keep balance. Cruising is a

brief, transitory skill that overlaps with crawling and disappears

after infants can walk [17, 18]. Like walking, cruising involves

an upright posture, and like crawling, cruising involves move-

ments of all four limbs; indeed, cruising may be considered
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Figure 1. Experiment 1 Design and Results
(A) Apparatus used to test infants cruising along a continuous handrail they held for support.

(B) Crawling and cruising experiencewere not correlated. After excluding the outlier (marked in red), the correlation improved, but was not significant, r(21) =�.39,

p = .06.

(C) Cruising experience predicted infants’ speed; yellow highlighting and asterisk denote p < .00.

See also Figure S2.
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functionally as ‘‘upright crawling’’ [17]. Crawling experience

leads to a consistent anti-phase pattern where diagonal limbs

(right arm, left leg, etc.) move together [10, 19, 20], but effects

of experience on interlimb coordination in cruising are unclear

[21, 22]. Moreover, unique to cruising, infants must incorporate

environmental support into their coordination patterns [21], and

the nature of the support (distance between furniture, height of

the table, compliance of the couch, etc.) influences which pat-

terns are viable [17, 23].

In two experiments, we used computer-vision, machine-

learning, and time-series analyses [24, 25] to test the role of

experience in interlimb coordination based on videos of cruising

infants. In Experiment 1, we observed infants under uniform con-

ditions (infants cruised over a continuous handrail) to test effects

of experience on cruising proficiency and variability in coordina-

tion patterns. In Experiment 2, we observed infants under varying

conditions (infants cruised over two handrails separated by

different distances) to test effects of experience on interlimb co-

ordination. If the nativist view is correct—that infants first master

a specific solution and then expand it to other situations—we

should see use of the same coordination pattern in novice

cruisers (regardless of handrail distance) but additional patterns

in experienced cruisers (tailored to handrail distance). However,

if the emergentist view is correct—that infants shift from trying

different patterns inconsistently to adapting interlimb coordina-

tion to the constraints of current body-environment relations—

then both novice and experienced cruisers should use multiple

coordination patterns, but only experienced cruisers should

tailor interlimb coordination to changes in handrail distance.

RESULTS

Infants Learn to Cruise Faster with the Same Number of
Limb Movements
In Experiment 1, infants cruised repeatedly over a 302-cm-long

wooden handrail (n = 24; Figure 1A and STAR Methods). We

held age constant (11 months ± 1 week) and allowed cruising

(13–103 days) and crawling experience (29–119 days) to vary.

Most infants began crawling at younger ages than cruising
2 Current Biology 30, 1–10, December 7, 2020
(Figure S1A), but crawling and cruising experience were not

correlated, r(22) = �.10, p = .64 (Figure 1B).

First, we tested effects of cruising and crawling experience on

overall speed and the number of arm and leg steps (see STAR

Methods). Step number reflects the average size of limb move-

ments (fewer steps implies larger movements). Although step

number and speed varied widely across infants, only speed

was correlated with cruising experience, r(22) = .65, p < .00, indi-

cating that practice cruising led infants to move faster (Fig-

ure 1C), not to take larger steps (Figures S2A and S2B). Crawling

experiencewas unrelated to step number or speed, ps > .14 (Fig-

ures S2C–S2E), suggesting that practice moving all four limbs

during crawling did not improve cruising skill.

Cruising Experience Predicts More Efficient Interlimb
Coordination in Real Time
Infants did not improve due to the total number of limb move-

ments. Therefore, we examined their interlimb coordination,

that is, how infants changed the distance between their arms

and between their legs from moment to moment. We used com-

puter vision to represent coordination as amovement time series

(MTS); see Figures 2A–2C and STAR Methods. Figure 2D shows

exemplars of arm and leg MTS in one representative trial of the

most and least experienced cruisers (see Figure S3 for MTS of

all infants). Positive z-scores in the time series indicate increased

distance between the arms or the legs, and negative z-scores

indicate decreased distance. Figure 2E shows three cycles of a

common coordination pattern in the MTS (bottom panel) and

the infant’smovements from the relevant video frame (top panel).

To test the consistency of infants’ coordination patterns, we

quantified variability in arm and leg movements independently

(see STAR Methods). If the coordination pattern is stable, vari-

ability is low; if the coordination pattern is inconsistent, variability

is high. Infants with more cruising experience showed less

variability in arm steps, r(22) = �.46, p < .03, and leg steps,

r(22) =�.41, p < .05, but crawling experience was not correlated

with movement variability (Figures 3A and 3B). Moreover, arm

and leg variability were negatively correlated with cruising

speed, r(22) = �.73 and r(22) = �.75 respectively, ps < .00
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Figure 2. Experiment 1: Movement Time Series for Arms and Legs

(A) Human coders manually scored videos for trials in which infants successfully crossed the distance between handrails.

(B) A computer vision algorithm tracked body movement frame-by-frame (colored skeleton presents an example of data from one video frame).

(C) For each video frame, we calculated the distance between the limbs (darms for the distance between the hands and dlegs for the distance between the feet), to

extract the coordination pattern for cruising.

(D) Movement time series representing a trial by the most experienced cruiser (103 days; top) and the least experienced cruiser (13 days; bottom). More

experience led to faster performance and more stable arm-leg coordination.

(E) Example of an anti-phase strategy in 4 s of cruising, in which infants open their legs (by stepping the leading leg sideways) and close their arms (by bringing the

trailing arm next to the leading arm) at the same time, and then close their legs (by bringing the trailing leg next to the leading leg) and open their arms (by moving

the leading arm sideways) at the same time in an oscillatory manner.

See also Figure S3 and Table S1.
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(Figures S4A and S4B). Thus, experienced cruisers moved their

arms and legs faster than novice cruisers, and they did so more

consistently from step to step.

Experienced cruisers were also better at coordinating arm and

leg movements in real time. We quantified the coordination be-

tween arm and leg MTS in three ways. First, we tested similarity

by calculating the cross-correlation between the arm and leg

MTS (see STAR Methods). Figure 3C shows that similarity in

the two MTS increased with cruising experience, r(22) = .53,

p < .01, but not with crawling experience. Increased similarity

was accompanied by increased cruising speed, r(22) = �.40,

p < .05 (Figure S4C).

Second, we analyzed the coordination between arm and leg

MTS across the video frames in each trial using Pearson correla-

tions (see STAR Methods). A large positive correlation indicates
a precise in-phase strategy in which infants open their arms and

legs on the same side of the body simultaneously and then close

their arms and legs on the other side of the body simultaneously,

as in a pace-like gait; conversely, a large negative correlation

indicates a precise anti-phase strategy in which infants

open their legs and close their arms at the same time and then

close their legs and open their arms at the same time in an

oscillatorymanner, as in a trot-like gait (see exemplar plots in Fig-

ure 2D). Every infant showed negative correlations (range =�.12

to �.64, M = �.36), indicating a common anti-phase strategy.

Moreover, infants with more cruising experience showed larger

negative correlations between the two MTS than infants with

less cruising experience, r(22) = �.42, p < .04, but crawling

experience was unrelated (Figure 3D). As with other measures,

faster cruising speed was associated with larger correlations,
Current Biology 30, 1–10, December 7, 2020 3



A

B

C

D

E

Figure 3. Experiment 1: Changes in Cruising with Experience

Scatterplots showing correlations between cruising experience and crawling

experience, and five measures of interlimb coordination; yellow highlighting

and asterisks denote significant correlations (ps < .05).

(A) Variability in leg movements (SD of step duration) decreased with cruising

experience, but not with crawling experience.

(B) Variability in arm movements, like leg movements, decreased with cruising

experience, but not with crawling experience.

(C) Similarity (maximal cross-correlation coefficient) between arm and leg

movement time series increased with cruising experience, but not with

crawling experience.

(D) The negative correlations between arm and leg movements (indicating a

precise anti-phase coordination pattern) increased with cruising experience,

but not with crawling experience.

(E) The phase-locking value (see STARMethods) was positively correlatedwith

cruising experience, but not with crawling experience.

See also Figure S4.
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r(22) =�.59, p < .00 (Figure S4D). Thus, with cruising experience,

infants learned an efficient real-time solution in which they alter-

nated arm and leg movements for fast cruising.

Finally, we calculated the real-time phase-locking value

between arm and leg MTS (see STAR Methods). A high phase-

locking value indicates that the lag between oscillatory arm

and leg movements is constant over time. Higher phase-locking

values were positively correlated with cruising experience,

r(22) = .41, p < .05, but not correlated with crawling experience

(Figure 3E). As with other coordination measures, phase-locking

values were correlated with cruising speed, r(22) = -.40, p < .05

(Figure S4E). Thus, leg-arm coordination in experienced cruisers

was consistent across the entire trial.

In contrast to cruising experience and speed, infants’ body

dimensions (height, weight, leg length, and wingspan from

fingertip to fingertip) were not correlated withmeasures of move-

ment or coordination (rs < .37, ps > .07; Table S1), suggesting

that improvements were not due to physical characteristics

such as longer arms and legs.

Infants Adapt Patterns of Coordination to Cope with
Distance between Handrails
What happens, however, when the environment is not constant?

Variations in the environment are endemic in everyday locomo-

tion. For cruising infants, the distance between support surfaces

varies (couch to coffee table, bed to nightstand, etc.). In such

cases, do cruising infants rely on their common anti-phase coor-

dination pattern, or do they create new solutions on the fly? The

nativist view predicts that novice cruisers will use the trot-like

gait evidenced in a uniform environment (as in Experiment 1)

across variations in the environment, whereas experienced

cruisers will use additional patterns. The emergentist view pre-

dicts that both novice cruisers and experienced cruisers will

use a variety of coordination strategies, but only experienced

cruisers will tailor their solutions to body-environment relations.

In Experiment 2, we tested a new sample of 11-month-olds

(±1 week) cruising over variable distances between two hand-

rails they held for support (n = 22; see Figure 4A and STAR

Methods). As in Experiment 1, infants had a wide range of

cruising (6–122 days) and crawling experience (14–170 days);

experience with the two forms of locomotion was related,

r(20) = .40, p = .06 (Figure 4B and Figure S1B). Sessions began

with two trials with the handrails abutting (i.e., infants cruised

over a solid handrail as in Experiment 1). Then, we separated

the handrails. Smaller distances between handrails were easily

within infants’ arm reach, and larger distances required a big

stretch, but all distances required planning to prevent the hands

from falling into the gap and the legs from getting too far away

from the hands. Because our focus was on interlimb coordina-

tion, we only analyzed trials (331 in total) in which infants cruised

successfully across the handrail distance (see STARMethods for

details about variations in distance and the criteria for successful

cruising).

After verifying that infants in Experiment 2 cruised over a

continuous handrail using the same anti-phase strategy as in

Experiment 1 (see START Methods for replication), we analyzed

trials in which infants cruised over varying gaps between hand-

rails using Pearson correlations between arm and leg distance

across video frames. In contrast to the continuous handrail,



A B Figure 4. Experiment 2 Design

(A) Apparatus used to test infants cruising between

two handrails they held for support.

(B) Cruising and crawling experience were related

(p = .06).
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infants showed no evidence of a consistent anti-phase strategy:

The correlations were both positive and negative (M = �.13;

range across trials: �.61 to .39), with negative correlations in

only 37% of the trials. Moreover, visual inspection of the videos

confirmed that infants did not perform oscillatory movements to

cross the distance between handrails. Thus, we created a

different type of MTS based on the sequence and timing of all

four limb movements, rather than arms and legs separately.

Because trials varied in duration, we used dynamic time warping

(DTW) to calculate a similarity index for each pair of trials (see

STAR Methods). High similarity between the two MTS indicates

a similar real-time strategy. Thus, the procedure allowed us to

compare similarity across trials. Figure 5A depicts the MTS in

three trials (positive numbers denote increased distance, and

negative numbers denote decreased distance). The top two tri-

als show a similar strategy: infants moved the leading arm and

leg at the same time (green and purple curves increased together

in both MTS), then brought the trailing arm to the leading arm to

close the distance (green curves decreased), and then brought

the trailing leg near to the leading leg (purple curves decreased).

These top two trials differ from the bottom trial in which the lead-

ing leg moved to increase the distance between legs (purple

curve increased), the leading arm moved before the leg stopped

moving (green curve increased), then the trailing leg closed the

distance (purple curve decreased), and finally the trailing arm

moved to the leading arm (green curve decreased). Thus, the

top two MTS are more similar to each other than to the MTS in

the bottom trial.

Comparing the similarity of each pair of trials across all in-

fants and trials yielded a movement similarity matrix where

the value of each cell reflects the degree to which the pair of tri-

als is similar. Thus, the similarity matrix encapsulates essential

information about infants’ real-time strategies, which allowed

us to cluster trials based on their similarity. We used a den-

sity-based cluster analysis that makes no assumptions about

the number of strategies (Figure 5B; see STAR Methods). If tri-

als sort into more than one cluster, that would provide evidence

for distinct strategies.

The cluster analysis revealed eight real-time strategies, which

we validated with visual inspection of the video for each trial. Fig-

ure 6 illustrates the primary components of each strategy. Strate-

gies differed based on the temporal order in which infants moved

their limbs—that is, how infants moved their leading and trailing

arms/legs when they started and finished crossing the distance
Cu
between handrails. Infants used four ways

to begin crossing. They either stretched

their leading leg without moving their arms

(strategies #1 and #2), stretched their lead-

ing leg and leading arm simultaneously

(strategy #3), stretched their arms without

moving their legs (strategy #7), or stretched
their leading arm and trailing leg simultaneously (strategies

#4, #5, #6, and #8). On the second handrail, at the end of the trial,

infants always moved their trailing arm to complete crossing,

but strategies differed in what infants did with the other limbs.

At the same time that they moved their trailing arm, infants either

moved their trailing leg (strategies #1, #3, and #4), moved their

leading leg (strategies #2, #7, and #8), moved both leading leg

and leading arm (strategy #5), or did not move other limbs at all

(strategy #6).

Strategies differed at different handrail distances within and

across infants (Figure S5). Strategy #1 was most common,

used by all infants (Figure 6, bottom-right panel), occurring at

most distances (23 out of 25; Figure S5). Each real-time strategy

was used by at least six infants, and all infants used 3�6 different

strategies (Figure 6, bottom-right panel), indicating that all

infants usedmultiple strategies, unlike Experiment 1, in which in-

fants used the single anti-phase strategy.Moreover, infants used

the anti-phase coordination pattern only in strategy #8. The cor-

relation between arms and legs for the anti-phase strategy was

M = �.47 (SD = .37), whereas for other strategies, correlations

ranged from �.25 to .10.

Infants Learn to Use the Appropriate Strategy at the
Right Time
We tested whether the use of different strategies changed

according to changes in body-environment relations (i.e., ratio

between infants’ wingspan and handrail distance). Trials with

different ratios require different real-time strategies. For

example, a high ratio indicates a more challenging task and re-

quires a strategy in which infants stretch their arms as wide as

they can while maintaining balance. With a low ratio, there is no

need for maximum arm stretching, and infants can use the

same anti-phase strategy they used when the handrail was

continuous. Figure 7A shows that real-time strategies were

indeed geared to the body-environment ratio: strategy #1 for

high ratios >.5; strategies #2-5 for moderate ratios >.25 and

<.5; and strategies #6–8 for low ratios < .25. Finally, we exam-

ined the use of high-, moderate-, and low-ratio strategies as a

function of cruising experience. To that end, we performed a

median split based on cruising experience (Mexperienced =

84.91 ± 23.11 cruising days, MNovice = 32.45 ± 15.92; t(10) =

5.16, p < .00). Experienced cruisers used the appropriate strat-

egy more consistently than novice cruisers (diagonals in

Figure 7B).
rrent Biology 30, 1–10, December 7, 2020 5
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Figure 5. Experiment 2: Movement Similar-

ity Matrix

(A) Movement time series representing trials in

three different infants. Two trials (top and middle)

had high similarity (both graphs show a coordi-

nation strategy in which infants increased the

distance between legs and arms, then decreased

leg distance, and then decreased arm distance),

and two trials (middle and bottom) had low simi-

larity (bottom graph shows a different strategy in

which the infant increased the distance between

arms, then increased leg distance, then decreased

arm distance, then decreased leg distance).

(B) Clustering based on the similarity among trials.

Left panel shows all trials in a two-dimensional

space. Each trial is represented by a symbol, and

the distance between every two points is the

similarity between them (e.g., points that are

closer together represent more similar trials). Trials

are colored according to clusters. Right panel

shows the movement similarity matrix ordered

according to clusters. The blue squares along the

diagonal show high similarity among trials within

clusters (square borders match cluster colors in

left panel). See also Figure S6.
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Infants Learn to Switch StrategiesOnlyWhenNecessary
Switching strategies is not always necessary. If the body-envi-

ronment relation is constant, modifying the coordination pattern

indicates inconsistency in strategy selection. To test individual

differences in strategy switching, we defined a switching index

S as the number of real-time strategies for different handrail dis-

tances. Because adjacent distances are similar (e.g., 28 and

30 cm), we systematically varied the window size for calculating

S (see STAR Methods). When S equals 1, switching is most

consistent—the same real-time strategy is used for similar dis-

tances, suggesting that infants switched real-time strategies

only when required. Larger S values indicate inconsistent switch-

ing, that is, different real-time strategies were used for similar

distances. We found that the S index was negatively correlated

with cruising experience across relatively small window sizes

(Figure 7C); r(20) = �.94, p < .00 for the smallest 2-cm window;

r(20) = �.79, p < .00 for 4 cm; and r(20) = �.55, p < .00 for

8 cm. In contrast, for relatively large window sizes (12 and

16 cm), we did not find significant correlations, rs(20) > -.38,

ps > .07, meaning that switching was specific to the wingspan-

distance ratio. Decrease in the switching index with cruising

experience indicates that experienced cruisers were more

‘‘consistent switchers’’ than novice cruisers. Although the S in-

dex decreased with crawling experience, we did not find signif-

icant correlations with crawling experience for any window size

(Figure 7D), ps > .05. This result shows that improvement in

switching strategies does not result from overall experience

moving the four limbs, but rather specific experience with the

relevant skill.
6 Current Biology 30, 1–10, December 7, 2020
DISCUSSION

We used cruising as a model system to

understand how infants learn to adapt

their actions to changes in local condi-
tions. When cruising, infants must incorporate environmental

support into their coordination patterns. With a uniform handrail,

infants can use a single coordination pattern, but variable dis-

tances between two handrails require infants to modify their

movements according to the changing relations between their

body size (wingspan) and handrail distance. As predicted by

both nativist and emergentist accounts of coordination patterns

in a uniform environment, we found that infants cruised faster

and more consistently with cruising experience (Experiment 1).

However, infants’ real-time strategies in a variable environment

were consistent only with the emergentist account: As predicted,

experienced cruisers used solutions tailored to the body-dis-

tance ratio, whereas novice cruisers changed solutions willy-nilly

regardless of distance or body size (Experiment 2).

Locomotor Solutions as Coordination Patterns
Previously, researchers assessed infants’ solutions to locomotor

problems based on manual video coding of the form of locomo-

tion (e.g., cruising, crawling, scooting, and so on, as in [17]) or

variations in posture within a form of locomotion (e.g., using a

handrail to walk in ‘‘hunchback,’’ ‘‘windsurfing,’’ or ‘‘mountain

climbing’’ postures as in [26]). With adults, researchers can

assess interlimb coordination by attaching motion sensors to

the body [27]. However, motion sensors disrupt infants’ natural

activity. Thus, we developed a new, video-based, sensor-

free approach that allowed us to quantify infants’ coordination

patterns in both a uniform and variable environment. Our analytic

approach builds on similarity analysis in math, psychology,

and neuroscience [28–30], and recent advances in artificial



Figure 6. Experiment 2: Drawings of the Eight Strategies Revealed by the Cluster Analysis

Each strategy is color-coded throughout the figure. Left box for each strategy depicts the start of the trial, and each subsequent box represents a change in arm

and/or leg movements. Green and purple circles indicate which limbs moved, and the text describes the change in limb configuration. Bottom-right panel shows

summary of the coordination strategies for each infant. See also Figure S5.
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intelligence and computer vision [24, 31, 32]. It provides precise,

quantitative, and objective details about infants’ coordination

patterns from moment to moment and facilitates deeper under-

standing of real-time motor solutions.

How Experience Affects Coordination Patterns
Under uniform conditions (continuous handrail) in Experiment 1,

experience facilitated cruising speed as infants converged to a

stable, anti-phase coordination pattern. Infants got faster with

prior cruising experience because they mastered a specific co-

ordination pattern—a trot-like gait—not because they

increased the speed and amplitude of individual limb move-

ments regardless of coordination. However, the anti-phase co-

ordination pattern was rare in Experiment 2 when the environ-

ment was variable (varying distance between two handrails).

Both novice and experienced cruisers displayed a variety of co-

ordination patterns to cross from one handrail to the other, and

experience facilitated solutions by teaching infants to use the

appropriate pattern at the appropriate time. Moreover, experi-

enced cruisers used the same coordination pattern for the
same distance and different patterns for different distances,

whereas novice cruisers switched coordination patterns from

trial to trial while crossing the same distance.

The diversity of coordination patterns in novice cruisers sup-

ports the emergentist view—that development begins by

generating multiple solutions regardless of the environment,

and with experience, infants learn to select coordination pat-

terns that are specific to the relations between body and envi-

ronment. If the nativist view were correct that infants begin with

a prescribed solution and experience elaborates on that solu-

tion, novice cruisers should have used the same coordination

pattern over and over. But they did not. Instead, novice cruisers

tried different strategies even for the same distance between

handrails.

Our findings expand on previous work that points to everyday

experience as fundamental for facilitating infants’ ability to solve

locomotor problems (for reviews, see [4, 6]). As in the current

study, previous work showed that novice walkers take large

and small, fast and slow steps indiscriminately while walking

down slopes; they do not tailor gait patterns to the degree of
Current Biology 30, 1–10, December 7, 2020 7



A

C D

B Figure 7. Experiment 2: Changes in Coordi-

nation Strategies with Experience

(A) Average ratio between infant wingspan and

handrail distance for each strategy across trials

(error bars denote standard errors).

(B) Differences between experienced and novice

cruisers in when they used each strategy for each

wingspan-distance ratio.

(C and D) Switching index (see STAR Methods)

decreased with cruising experience using window

sizes of 2, 4, and 8 cm (C), whereas the switching

index did not significantly decrease with crawling

experience for any window size (D); yellow high-

lighting and asterisks denote significant correla-

tions (ps < .05).
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slant, so their momentum increases uncontrollably on steep

slopes. Over weeks of everyday walking experience, infants

learn to precisely match their step length and speed to varia-

tions in slant in real time, and they plan their gait modifications

prospectively before stepping over the brink [33]. Use of real-

time analyses and machine-learning algorithms in the current

study revealed how infants acquire this ability. They start by

generating a variety of solutions, and over weeks of experience

they learn to assemble the appropriate coordination pattern on

the fly.

Specificity of Experience
A robust finding in both experiments was the specificity of in-

fants’ prior experience. Only cruising, not crawling experi-

ence, predicted infants’ performance, despite the fact that

crawling involves an anti-phase coordination pattern among

the four limbs [10, 14, 19] and typically precedes cruising

[18]. Thus, experience with an earlier developing skill does

not transfer automatically to a later developing skill. Learning

is specific to the different problems of crawling and cruising.

The dissociation between postures supports a growing body

of research showing that infants’ success is predicted by their

experience maintaining balance in each posture, not by their

age or duration of general locomotion experience [for reviews,

see 4, 5, 6].

What constitutes infants’ prior cruising experience? It is unlikely

that everyday experience involves long stretches of anti-phase in-

terlimb coordination because—unlike the 302-cm long handrail in

the lab—the everyday world is not populated with long, contin-

uous surfaces at infants’ chest height. Moreover, everyday

experience is unlikely to entail practice cruising over the specific

body-distance ratios we tested in the lab because the distance

between furniture is variable from one home to the next and
8 Current Biology 30, 1–10, December 7, 2020
infants’ body size changes from week to

week [34]. Thus, it is unlikely that infants

learned particular solutions from everyday

life and then applied them in the lab.

Rather, we suggest that everyday cruising

experience coping with changes in the

body and environment promotes

‘‘learning to learn,’’ where infants learn to

assemble the appropriate strategy for

newproblems in real time.More generally,
infant data and robot simulations based on infant data indicate

that varied motor experience promotes adaptive, real-time solu-

tions for sitting, crawling, cruising, and walking [17, 33, 35–37].

Future work should investigate which aspects of variable experi-

ence promote learning to learn.

Conclusions
How do infants acquire the flexibility to solve locomotor prob-

lems in real time, like cruising over varying distances between

supports? As predicted by an emergentist view, inexperienced

infants generate multiple solutions, some better, some

worse, and do the best they can. Over weeks of everyday expe-

rience with the relevant motor skill—all the while presumably

coping with variations in the body and environment—infants

learn to assemble solutions in real time as they encounter new

problems.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Third-person infant videos [17] https://nyu.databrary.org/volume/1116

Software and Algorithms

MATLAB analyses codes This paper https://anonymous.4open.science/r/1116/

Computer vision analyses OpenPose https://github.com/CMU-Perceptual-

Computing-Lab/openpose

Data coding software Datavyu https://datavyu.org/
RESOURCE AVAILABILITY

Lead Contact
Requests for further information and data resources should be directed to and will be fulfilled by the Lead Contact, Karen E. Adolph

(karenadolph@nyu.edu).

Materials Availability
This study did not generate new reagents.

Data and Code Availability
All third-person videos of infants’ behaviors and pose estimations and the video coding manual are publicly shared in Databrary

(https://nyu.databrary.org/volume/1116). The analysis codes are shared publicly on Github (https://anonymous.4open.science/r/

1116/).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Parents of all participating infants gave written informed consent prior to participation. All experiments were approved by the ethics

board of New York University. Families were recruited from maternity wards of local hospitals in the NYC area and received small

souvenirs for participation.

Experiment 1. Twenty-four 11-month-old infants (10.84–11.34 months; 10 boys) participated. All infants could cruise and crawl.

Based on parent report, infants had M = 49.7 days of cruising experience (range = 13–103 days) and M = 72.3 days of crawling

experience (range = 29–119 days), dating from the first day infants cruised 1 m continuously along a couch or coffee table and

crawled 3 m on hands and knees continuously across the floor [17, 23]; Figure S1A. An experimenter measured infants’ recumbent

height, nude weight, leg length (from hip to ankle), and wingspan (outstretched arms from fingertip to fingertip) as shown in Table S1.

Data from 7 additional infants were not analyzed due to infants fussing (n = 6) or video equipment failure (n = 1).

Experiment 2. Twenty-two 11-month-old infants (±2 weeks; 10.52–11.63 months, 12 boys) participated. Parents reported that

infants had M = 58.68 days of cruising experience (range = 6–122 days) and M = 88.78 days of crawling experience (range =

14–170 days); see Figure S1B.

METHOD DETAILS

Procedure and Apparatus
Experiment 1. Infants cruised sideways (facing handrail and holding it with both hands) over a 302-cm long 3 14-cm wide wooden

handrail on a raised platform covered with plush carpet. The height of the handrail (41 cm) was approximately at infants’ chest level,

55%of their average standing height. Each infant contributed four cruising trials to analyses. Trials beganwith infants standing at one

end of the platform and ended after infants cruised to the other end of the platform. An experimenter followed alongside infants to

ensure their safety. Infants’ movements were recorded with a panning camera (30 fps) perpendicular to the handrail (see Figure 1A

and Databrary: https://nyu.databrary.org/volume/1116). We aimed for 4 trials per infant, but due to occasional fussiness, we ob-

tained M = 3.54 trials per infant.

Experiment 2. As in Experiment 1, infants cruised sideways over a wooden handrail on the raised platform. However, as shown in

Figure 4A, the handrail was composed of two 105-cm long segments that could be separated to create 0- to 68-cm wide distances
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between handrails [17, 23]. Cruising over the gap between handrails required infants to position their arms and legs appropriately on

the edge of the first handrail so they could grasp the edge of the second handrail without losing balance. Trials began with infants

holding the first handrail about 10 cm away from the edge (Figure 4A). The distance between handrails varied according to an adap-

tive psychophysical procedure that provided more and less challenging distances based on infants’ success at cruising on the last

trial [17].

Experiment 2: Variations in Distance between Handrails
Although the distance between handrails could vary between 0–90 cm, the largest distance any infant cruised successfully was 68 cm

(in most cases, infants crawled across the larger distances rather than avoiding; in a few cases, infants tried to cruise and fell). Half of

the trials, 51.1%, had a 16-cm distance between handrails because we had to repeat relatively easy trials to keep infants motivated.

Thus, the number of successful trials and the distribution of handrail distances varied across infants (range = 10 to 20 trials per infant,

M = 15.04). We focused on the portion of the video when infants cruised from one handrail to the other to enable comparisons across

distances and infants (see Databrary: https://nyu.databrary.org/volume/1116). Related to STAR Methods.

Data Coding
Experiment 1. Because infants sometimes began cruising slightly beyond the start of the handrail and/or stopped cruising momen-

tarily as they moved along the handrail, we analyzed infants’ movements for a 69-cm segment of the handrail defined by permanent

posts on the platform. A primary coder used Datavyu software (www.datavyu.org) to identify the first video frame when infants’ lead-

ing leg moved past the first post and the first video frame when their trailing leg moved past the second post. The coder also scored

the number of times infants lifted and set down each foot and each hand. A second coder independently rescored all the trials. Inter-

observer agreement ranged from 89%–96%, Cohen’s ks > 0.86, ps < 0.00.

Experiment 2. Coders used Datavyu to identify trials when infants cruised successfully over the handrail distance. Trials were

considered successful if infants cruised safely from one handrail to another. Trials were unsuccessful if infants attempted to cruise

but fell into the gap between the handrails, avoided crossing for the 30 s trial, or crawled from one handrail to the other. Only suc-

cessful trials were analyzed further. Next, coders scored the onset and offset of each trial. Trial onset was the first video frame when

infants’ arm or leg moved past the edge of the starting handrail. Trial offset was the first video frame when both arms were on the

ending handrail. A second coder scored 25% of the trials for each infant. Coders agreed on success for 98% of trials, Cohen’s

k > 0.78, p < 0.00; the correlation coefficient for cruising time was r = 0.95, p < 0.00.

Movement Time Series
Experiment 1. We used AutoViDev—a video-analysis tool that uses computer vision to support video-based developmental

research [24]—to automatically detect infants’ movements and to formalize cruising as a time series (Figure 2 and Databrary:

https://nyu.databrary.org/volume/1116). The software applied a convolutional pose machine algorithm [38] based on real-time 2D

pose estimation using part affinity fields, OpenPose [31, 32]. Computer-vision detection of infants’ limb positions was successful

in all the trials, although the algorithm occasionally lost a frame or two.

Then, as shown in Figure 2C, for each video frame, we calculated the Euclidean distance of each pair of limbs (the two hands and

the two feet), where x,y signifies the location of the key points in a video frame:

darms =
�
xright hand � xleft hand

�2
+
�
yright hand � yleft hand

�2
(a)
dlegs =
�
xright foot � xleft foot

�2
+
�
yright foot � yleft foot

�2
(b)

Change in these distances across video frames characterizes the moment-to-moment coordination in cruising. For example, the

distance between the hands increases as infants stretch out their arms and it decreases when they bring their arms together. Simi-

larly, the distance between the feet increases when infants take a step and decreases when they take another step by closing their

legs. Therefore, we created amovement time series (MTS) for each trial based on changes in the hands and feet distances, where n is

the number of frames in trial t:

arm MTSt =
�ðdarmsÞ1; ðdarmsÞ2..ðdarmsÞn

�
(c)
leg MTSt =
��
dlegs

�
1
;
�
dlegs

�
2
..

�
dlegs

�
n

�
(d)

To reduce signal noise, we smoothed the change in distance by: (a) calculating a z-score for each trial; (b) down-sampling every

two frames; and (c) applying a one-dimensional median filter in 2nd order for both arms and legs. Importantly, each MTS reflects

temporal distance changes between infant’s limbs, and not absolute values of those distances. Therefore, differences between

MTSs are not affected by differences in camera location or experimenter-induced movements of the camera across trials and

participants. Figure 2D shows examples of MTS for an experienced cruiser (top) and novice cruiser (bottom).
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Experiment 2. As in Experiment 1, computer vision detection of infants’ movements was successful in all trials. For Experiment 2,

we formalized cruising trials as a multivariate MTS [39] that combined changes in arms and legs, where n is the number of frames in

trial t:

MTSt =
��
darms;dlegs

�
1
;
�
darms;dlegs

�
2
..

�
darms;dlegs

�
n

�
(e)

We reduced signal noise similarly to Experiment 1.

Replication of Experiment 1: Infants Use Anti-Phase Strategy to Cruise Over a Continuous Handrail
To replicate Experiment 1 for the dataset in Experiment 2, we used similar computer-vision algorithms to detect infants’ movements

and then represented arm and legmovement time series for each trial. For the initial trials in which infants cruised over a solid handrail,

we selected the first sequence with 8 consecutive leg steps. For 21 infants, we used Pearson correlations between arm and leg

distance for each time series at each video frame to compare interlimb phasing (the algorithm failed to detect cruising on the solid

handrail for one infant because of camera movement). As before, infants showed a preferred anti-phase coordination

pattern (range = -.74 to 0.08, M = -.30), and infants with more cruising experience showed larger negative correlations, r(19) =

-.46, p < .04.

Dynamic Time Warping
In Experiment 2, infants cruised across different handrail distances. Therefore, each multivariate MTS differed in length (Figure 5A).

We used dynamic time warping (DTW) to calculate the similarity between trials across infants and distances. DTW is a non-linear

sequence alignment algorithm [40] widely used in machine-learning processes for speech recognition, bioinformatics, and

handwriting identification [41, 42]. DTW of multivariate time series provides a robust similarity measure that indicates the similarity

in coordination patterns between each pair of trials [43, 44]. Similarity was defined as 1 over the cumulative DTWmeasure normalized

by the length of the DTW path. Figure S6 shows the DTW process for calculating similarity between trials with similar (left) and not

similar (right) coordination patterns.

Density Peak Clustering
To identify real-time strategies in Experiment 2, we usedDTW to calculate similarity between each pair of trials. Then, we constructed

amovement similarity matrix—anm3 \]]mmatrix where the (i-th, j-th) cell of thematrix contains the similarity index between trial i and

trial j, and m is the total number of successful trials across infants and handrail distances. Thus, each cell in the similarity matrix in-

dicates the degree to which each pair of trials is similar.

We then clustered trials across infants and handrail distances based on their MTSs. As shown in previouswork [45, 46], thismethod

is agnostic about the number of clusters, and the reason for clusteringmust be interpreted posthoc based on themovement patterns.

The algorithm identifies several MTS as ‘‘strategy prototypes’’ and then classifies the rest of the trials according to the strategy

prototype to which they were closest in the similarity matrix. A prototype trial was characterized by (1) a high number of MTS that

were relatively similar (the ‘‘density coefficient’’); and (2) a low similarity to MTS with higher density coefficients (‘‘distance

coefficient’’).

The density coefficient reflects the number of MTS whose similarity to MTSi in the similarity matrix is higher than a pre-defined

cutoff similarity based on the potential entropy of the data field [47]. Formally, the density coefficient ri is estimated by the following

formula, where the function c is defined such that c = 1 if si;j � sc>0 and c = 0 otherwise; si;j represents the similarity between MTSi

and MTSj and sc represents the cutoff similarity:

ri =
Xm

j = 1

cðsi;j � scÞ (f)

The distance coefficient direflects the maximal similarity between each MTS and the next MTS with a higher density coefficient:

di = max
j:rj > ri

ðsijÞ (g)

TheMTSwith the highest density was assigned theminimum value. The distance coefficient and the density coefficient weremulti-

plied to create a g score for each trial. We chose prototypes as the outliers from the g distribution of all trials (outliers are values for

which g was at least three standard deviations above the mean). The number of outliers determined the number of clusters. All other

trials were assigned to the prototype trial to which they were most similar.

QUANTIFICATION AND STATISTICAL ANALYSIS

Real-Time Movement Variability
In Experiment 1, we assessed variability in step durations based on the phase changes in the arm and leg MTS. For each trial, we

calculated variability in phase change in theMTS for each pair of limbs independently. First, we extracted phase using a Hilbert trans-

form, a linear operator that splits the time series into its phase and power. Then, we calculated the difference in phase angle between

each two time points. If the difference in phase angle was not equal to 0, we considered the time point as a step onset. We calculated
Current Biology 30, 1–10.e1–e4, December 7, 2020 e3
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the duration between each pair of step onsets. Variability was then defined as the standard deviation of these durations. For each

infant, we averaged the standard deviation across trials.

Real-Time Measures of Coordination
In Experiment 1, we assessed infants’ coordination patterns using three measures that compare the arm and leg MTS: (1) Maximum

cross-correlation coefficient, (2) Pearson correlation, and (3) phase-locking value. Cross correlation between any two time series

measures their similarity as a function of time shift. The cross-correlation function is peaked at times when the time series are

most aligned. The maximum cross-correlation coefficient reflects the maximum similarity between the two time series across all

time lags. Therefore, we selected the maximum cross-correlation coefficient as our measure of similarity between arm and leg

movements.

The linear correlation between the two MTS was represented by a Pearson correlation value ranging from �1 (negative alignment

between arm and leg movements) to 0 (no alignment) to 1 (perfect alignment). The instantaneous phase locking value (PLV) repre-

sented the consistency between arm and leg MTS. PLV is widely used in neuroscience to evaluate the phase difference between

two brain signals [48]. Phases of two signals are ‘‘locked’’ (i.e., high PLV) if their difference is constant over time. Thus, this measure

reflects infants’ stability in coordinating arms and legs over the trial. This technique allowed us to compute stability without arbitrarily

defining a window size as done in moving correlations [49].

Switching Index
In Experiment 2, we examined whether infants switched real-time strategies for each handrail distance. Because adjacent distances

were similar (e.g., 28 and 30 cm), we systematically calculated a switching index for different sliding window sizes. We tested 2-cm,

4-cm, 8-cm, 12-cm, and 16-cm windows. For each infant, we computed the number of different strategies in each window size,

sliding along in 2-cm increments from 10 to 68 cm. Thus, for the 2-cm window size, we computed the number of different strategies

used when the distance was 10 cm, then 12 cm, and so on. For the 4-cm window, we computed the number of different strategies

when distance ranged from 10-14 cm, then from 12–16 cm, and so on. For the 16-cm window size, we computed the number of

different strategies when distance ranged from 10–26 cm, 12–28 cm, and so on.
e4 Current Biology 30, 1–10.e1–e4, December 7, 2020
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